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Diagram for Wavelet-based Image
Processing/Compression
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Wavelet Filters in Image Processing
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Tree Structure of Wavelet Coefficients

An Example
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Most highpass wavelet coefficients are negligible (small)

1 level linear spline 2 level Haar

Another Example

Sparse Wavelet Representation
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Small Entropy Numbers

m Coefficient entropies

Entropy
Original image 7.22
1-level Haar wavelet 5.96
1-level linear spline wavelet 5.53
2-level Haar wavelet 5.02
2-level linear spline wavelet 4.57

Correlation Between Different Scales
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*There are redundancy among bands (frequency)
*Coefficients in bands are from the same spatial place.

Quantization Schemes

e Scalar Quantization: Each real number is
quantized separately.

* An Example of a uniform quantizer:
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* Neighbouring coefficients are grouped into a
vector. A code book is used to quantize it.

EZW (Embedded Zerotree Wavelet)
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Hypothesis of EZW: If a wavelet coefficient at a coarse
scale is insignificant with respect to a given threshold T,
then all wavelet coefficients of the same orientation in
the same special location at a finer scales are likely to be
insignificant with respect to T.




SPIHT (Modified EZW)

Using a similar idea, the EZW has been further
improved by considering Set Partitioning in Hierarchical
Trees (SPIHT).

For EZW, see [J. M. Sapiro, Embedded Image Coding
Using Zerotrees of Wavelet Coefficients, IEEE Trans. SP,
41 (1993), 3445-3462].

For SPIHT, see [A. Said and W.A. Pearlman, A New, fast,
and Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees, IEEE Trans. CSVT, 6 (1996), 243-250]
Both EZW and SPHIT are progressive coder (can
terminated at any desired bit stream).

Significant Map Coding Using Zerotree

e

Four types of Label
1.Positive significant
2.Negative significant
3.Isolated zero
4.Zero tree root

For each coefficient:
Give a label based on
predefine threshold T

T — 2Ll()g 2% max J
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Basics on Coding Schemes

Code numbers and characters in ASCI|
(American Standard Code for Information
Interchange) and in UNICODE (used by Java)
Shannon entropy: {x1, ..., xn} with probability
P: -3 p(x,)log p(x,)

Entrob:yl/—based coding schemes: Huffmann
coding and arithmetic coding.

Symbols with high probability are encoded
with less number of bits

An Example of Coding Schemes

* An example to code: go go gophers
* In ASCII (8-bit), 3-bit, and Huffman coding

coding a message

ASCII coding
char ASCII binary

g

[Z I T T = S = B =

space

103 1100111
111 1101111
112 1110000
104 1101000
101 1100101
114 1110010
1151110011
32 1000000

3-hit coding
char code binary
g 0 000
001
010
011
100
101
110
111

[Z I T 1 T = ol = B ]

e T = R W I

space




Example and Coding Trees

go go gophers in ASCIl is coded as:
10311132103111321031111121041011140r 115

1100111 1101111 1100000 100111 1101111 1000000 1100111 1101111 1110000 1101000 1100101 L110010 1110011
3-bit:01701702123456 or W00 L0000 000N
Coding tree for ASCII:

‘a' =97 b =98 ot =99
rooi-to-leaf path to 'a' 1100001 1100010 1100011

Coding Tree

char binary
‘g 10
o 11
o) 0100
'h' 0101
‘el 0110
'r' 0111
's 000

001

Under this coding tree, gophers is encoded as
1011001 10 11001 10 110100 0101 01100111 000

Coding tree can be used to decode the bit stream

Building Huffman Coding 1

* Begin with a forest of trees. All trees have one
node with weights.

e Combine two trees with smallest weights.
* An optimal encoding tree is the last single tree

Huffman Coding: 2

e Build a Huffman coding tree for symbols: go go gophers
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Continuing
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Continuing

e go go gophers can be encoded as
00011000001100000111101101 10111111100

Compression by Huffman Coding

e The file contains: the Huffman coding tree or
information how to build it

e The bit stream for the coded message

* The end of bit stream symbol (EOF), since it is
not possible to store 1 bit in a computer.




Arithmetic Coding

No tree is needed. The length of the
subinterval is proportional to probablity

An example to code baca: a (2*), b(1*), c(1%*)

Measuring Quality: MSE and PNSR

* Let | be the original image and I’ be the
reconstructed image of size M*N.

* MSE=Mean Square Error is
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Image compression results

SPIHT 0.2 bits/pixel

JPEG 0.2 bits/pixel
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Image compression results
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Wavelet-based Image Denoising

Image denoising: Removing unwanted noise in order to
restore the original image.

Wavelet transform provides us with one of the methods for
image denoising.

Wavelet transform, due to its excellent localization property,
has rapidly become an indispensable signal and image
processing tool for a variety of applications, including
denoising and compression.

Wavelet denoising attempts to remove the noise present in

the signal while preserving the signal characteristics,
regardless of its frequency content.

Steps for Image Denoising

* Wavelet-based denoising involves three steps:
» a forward DWT
» nonlinear thresholding step
» aninverse DWT
e Methods used for thresholding in Step 2:
» Universal Thresholding
» Visu Shrink
» Sure Shrink
» Bayes Shrink

* Key idea: removes noise by killing coefficients
that are insignificant relative to some threshold.




Hard and Soft Thresholding

* The hard thresholding operator is * The soft thresholding operator is

defined as defined as
D(x, A) = x forall [x|>A D(x, A) = sgn(U)max(0, |x| -A)

Hard threshold is a “keep or kill” e Soft thresholding shrinks coefficients
proced_ure and is more intuitively above the threshold in absolute value.
appealing. ¢ The transfer function of the same is

e The transfer function of the same is shown here.
shown here.

Universal or Global Thresholding

The threshold
Aoy =V2INnNo

(N being the signal length, o being the noise variance)
is well known in wavelet literature as the Universal
threshold.

It is the optimal threshold in the asymptotic sense
and minimizes the cost function of the difference
between the function and the soft thresholded
version of the same in the L2 norm sense.

It is useful for obtain a starting value when nothing is
known of the signal condition.

VisuShrink

e VisuShrink is thresholding by applying the
Universal threshold proposed by Donoho and
Johnstone.

e This threshold is given by
o+2logM

where o is the noise variance and M is the
number of pixels in the image.

e For denoising images, VisuShrink is found to
yield an overly smoothed estimate.

SURE Shrink

SUREShrink is a thresholding by applying subband adaptive
threshold.

It is based on Stein’s Unbiased Estimator for Risk (SURE), a method
for estimating the loss in an unbiased fashion.

Let wavelet coefficients in the jth subband be { Xi:i=1,...,d }
For the soft threshold estimator

XAi :nt(xi)

we have

SURE (t;X) =d —2# {i:|X/| < t}JriminQXi
i=1

2

t)

Select threshold t5 by

t> =arg min SURE(t; X)




Bayes Shrink

BayesShrink is an adaptive data-driven
threshold for image denoising via wavelet
soft-thresholding.

We assume generalized Gaussian distribution
(GGD) for the wavelet coefficients in each
detail subband.

We then try to find the threshold T which
minimizes the Bayesian Risk.

Comparison based on minimum MSE
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